3.339 \(\int \sqrt{a+a \cos (c+d x)} \sec ^{\frac{9}{2}}(c+d x) \, dx\)

Optimal. Leaf size=153 \[ \frac{2 a \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x)}{7 d \sqrt{a \cos (c+d x)+a}}+\frac{12 a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{35 d \sqrt{a \cos (c+d x)+a}}+\frac{16 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{35 d \sqrt{a \cos (c+d x)+a}}+\frac{32 a \sin (c+d x) \sqrt{\sec (c+d x)}}{35 d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(32*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(35*d*Sqrt[a + a*Cos[c + d*x]]) + (16*a*Sec[c + d*x]^(3/2)*Sin[c + d*x]
)/(35*d*Sqrt[a + a*Cos[c + d*x]]) + (12*a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(35*d*Sqrt[a + a*Cos[c + d*x]]) + (
2*a*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.282498, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {4222, 2772, 2771} \[ \frac{2 a \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x)}{7 d \sqrt{a \cos (c+d x)+a}}+\frac{12 a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{35 d \sqrt{a \cos (c+d x)+a}}+\frac{16 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{35 d \sqrt{a \cos (c+d x)+a}}+\frac{32 a \sin (c+d x) \sqrt{\sec (c+d x)}}{35 d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(9/2),x]

[Out]

(32*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(35*d*Sqrt[a + a*Cos[c + d*x]]) + (16*a*Sec[c + d*x]^(3/2)*Sin[c + d*x]
)/(35*d*Sqrt[a + a*Cos[c + d*x]]) + (12*a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(35*d*Sqrt[a + a*Cos[c + d*x]]) + (
2*a*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Cos[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \sqrt{a+a \cos (c+d x)} \sec ^{\frac{9}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{9}{2}}(c+d x)} \, dx\\ &=\frac{2 a \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{1}{7} \left (6 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\frac{12 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{1}{35} \left (24 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{16 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{12 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{1}{35} \left (16 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{32 a \sqrt{\sec (c+d x)} \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{16 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{12 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.216151, size = 71, normalized size = 0.46 \[ \frac{2 (18 \cos (c+d x)+4 \cos (2 (c+d x))+4 \cos (3 (c+d x))+9) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{7}{2}}(c+d x) \sqrt{a (\cos (c+d x)+1)}}{35 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(9/2),x]

[Out]

(2*Sqrt[a*(1 + Cos[c + d*x])]*(9 + 18*Cos[c + d*x] + 4*Cos[2*(c + d*x)] + 4*Cos[3*(c + d*x)])*Sec[c + d*x]^(7/
2)*Tan[(c + d*x)/2])/(35*d)

________________________________________________________________________________________

Maple [A]  time = 0.471, size = 82, normalized size = 0.5 \begin{align*} -{\frac{ \left ( 32\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}-16\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,\cos \left ( dx+c \right ) -10 \right ) \cos \left ( dx+c \right ) }{35\,d\sin \left ( dx+c \right ) } \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{9}{2}}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(9/2)*(a+cos(d*x+c)*a)^(1/2),x)

[Out]

-2/35/d*(16*cos(d*x+c)^4-8*cos(d*x+c)^3-2*cos(d*x+c)^2-cos(d*x+c)-5)*cos(d*x+c)*(1/cos(d*x+c))^(9/2)*(a*(1+cos
(d*x+c)))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 1.62818, size = 382, normalized size = 2.5 \begin{align*} \frac{2 \,{\left (\frac{35 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{70 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{84 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{58 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac{9 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )}{\left (\frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{4}}{35 \, d{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{9}{2}}{\left (-\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{9}{2}}{\left (\frac{4 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{6 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac{4 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac{\sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

2/35*(35*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 70*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1
)^3 + 84*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 58*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c)
 + 1)^7 + 9*sqrt(2)*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^4/(
d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(4*sin(d*x + c)^2/(
cos(d*x + c) + 1)^2 + 6*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 4*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + sin(d*x
+ c)^8/(cos(d*x + c) + 1)^8 + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.59174, size = 220, normalized size = 1.44 \begin{align*} \frac{2 \,{\left (16 \, \cos \left (d x + c\right )^{3} + 8 \, \cos \left (d x + c\right )^{2} + 6 \, \cos \left (d x + c\right ) + 5\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{35 \,{\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/35*(16*cos(d*x + c)^3 + 8*cos(d*x + c)^2 + 6*cos(d*x + c) + 5)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/((d*cos
(d*x + c)^4 + d*cos(d*x + c)^3)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(9/2)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{9}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*cos(d*x + c) + a)*sec(d*x + c)^(9/2), x)